Flow Model of the Protein-protein Interaction Network for Finding Credible Interactions

نویسندگان

  • Kinya Okada
  • Kiyoshi Asai
  • Masanori Arita
چکیده

Large-scale protein-protein interactions (PPIs) detected by yeast-two-hybrid (Y2H) systems are known to contain many false positives. The separation of credible interactions from background noise is still an unavoidable task. In the present study, we propose the relative reliability score for PPI as an intrinsic characteristic of global topology in the PPI networks. Our score is calculated as the dominant eigenvector of an adjacency matrix and represents the steady state of the network flow. By using this reliability score as a cut-off threshold from noisy Y2H PPI data, the credible interactions were extracted with better or comparable performance of previously proposed methods which were also based on the network topology. The result suggests that the application of the network-flow model to PPI data is useful for extracting credible interactions from noisy experimental data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans

We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks

Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...

متن کامل

Investigating the effects of ibuprofen on the gene expression profile in Hippocampus of mice model of Alzheimer’s disease through bioinformatics analysis

Non-steroidal anti-inflammatory drugs (NSAIDs) identified effective in many diseases. One of which is neurodegenerative diseases including Alzheimer disease (AD). In this study gross alteration of gene expression in AD mice by ibuprofen treatment is investigated via Protein-protein interaction network (PPI) analysis. Expression profiling of microarray dataset GSE67306 was retrieved from GEO dat...

متن کامل

Investigating the effects of ibuprofen on the gene expression profile in Hippocampus of mice model of Alzheimer’s disease through bioinformatics analysis

Non-steroidal anti-inflammatory drugs (NSAIDs) identified effective in many diseases. One of which is neurodegenerative diseases including Alzheimer disease (AD). In this study gross alteration of gene expression in AD mice by ibuprofen treatment is investigated via Protein-protein interaction network (PPI) analysis. Expression profiling of microarray dataset GSE67306 was retrieved from GEO dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007